

THE BRAUNSCHWEIG MODEL

- A Water-Nutrient-Energy Cycle -

Content

- 1. History and development
- 2. Wastewater Board
- 3. Braunschweig Model
- 4. Advantages of the wastewater reuse
- 5. Résumé and outlook

HISTORY AND DEVELOPMENT OF THE WASTEWATER BOARD

History of wastewater reuse in Braunschweig

rst infiltration field	ds
rs	t intiltration field

- 1954 Formation of the Sewage Board
- 1955 -1966 Extension of the 4 drainage areas approx. 3.000 ha
- 1955 1979 Sprinkler irrigation of mechanically pre-treated wastewater
- 1979 1991 Construction of the treatment plant in 4 stages
- 1985 1990 Modification of the infiltration fields
- 2000 Construction of the sludge digester
- 2006 Construction of the biogas plant
- 2015 2018 Construction of process water treatment and sludge disintegration

THE WASTEWATER BOARD

Operational facilities

Hillerse

WASTEWATER TREATMENT PLANT

Concept for wastewater reuse

Wastewater treatment plant

Wastewater treatment plant

INFILTRATION FIELDS

Infiltration fields

Infiltration fields - Grey goose

Infiltration fields - Shelducks

IRRIGATION

Sprinkler irrigation

Sprinklers 1956 - 1974

Sprinkling machines since 1974

Irrigation

Necessity of irrigation and advantages of wastewater reuse in agriculture

Source: DWD, Station Braunschweig

Cultivation in the irrigation area

	1950	1970	1990	2010	2014
	%	%	%	%	%
Crop	42	39	60	40	39
Potatoes	26	20	6	4	4
Sugar-beets	6	16	25	17	17
Maize	0	2	2	32	38
Other	26	23	7	7	2

Relevance of wastewater reuse and its ingredients for resources conservation

Wastewater flow

Annual amount of treated water 21 Mio.m³/a
Hereof: reused by sprinkler irrigation 12 Mio.m³/a

artificial groundwater recharge O.Mie m3/e

artificial groundwater recharge 9 Mio.m³/a

Additional water demand for irrigation

approx. 100 mm on 2,700 ha 3,6 Mio.m³/a

Total amount of water for artificial groundwater recharge

8,4 Mio.m³/a

Amount of sludge generated

Primary	sludge ar	d activated sludge	6,800 t TS/a*
			,

Reduction by 30 % by digestion	2,050 t TS/a*
--------------------------------	---------------

Anaerobic digested sludge 4,75	,750 t T	3/a
--------------------------------	----------	-----

hereof: ~ 60 % sprinkler irrigation in the	
"Sewage board-area"	2,750 t TS/a*

~ 40 % elsewhere reused in agriculture 2,000 t TS/a*

*total solids/year

Ø Nutrient load and nutrient demand (kg/ha)

	Load	Demand
Ammonium, nitrate	50	140
Phosphate P ₂ O ₅	69	70
Potassium K	78	130
Magnesium MgO	38	45
Calcium CaO	318	380

Organic Substance 640 kg/ha

Arrangements for the protection of soil and groundwater

Indirect discharger monitoring in Braunschweig for 30 years

Abwasserverband

Cadmium-load in digested sludge

BIOGAS PLANT

Biogas plant

Technical data

RÉSUMÉ AND OUTLOOK

Résumé

The Braunschweig Model offers

- Sustainability through closed circles for water and nutrients
- Value chains of the plant production to electricity marketing
- Conservation of natural resources

Outlook

- Water demand in agriculture will rise due to climate change
- The fertilizer legislation makes the use of plant nutrients from wastewater difficult
- The future of the agricultural utilization of sewage sludge is uncertain after the momentary political utterances

