

COMPREHENSIVE RISK MANAGEMENT FOR GROUNDWATER BODIES WITH POOR CHEMICAL STATUS - A NEW APPROACH

POAKORI-PROJECT

LIISA KOIVULEHTO, JARNO LAITINEN, KIMMO JÄRVINEN, ESA ROUVINEN*

Aquaconsoil 2019 22.5.2019 Liisa Koivulehto, Ramboll Finland Oy

INTRODUCTION TO GROUNDWATER BODIES IN FINLAND

- Groundwater bodies (formations) are mainly situated in eskers, moraine and end moraine formations
- The formations are a result of the Weichselian glaciation (ice age) as the glacier retreated towards the north-west
- Aquifer thickness around 10 metres
- Small (average 1-2 km²) and scattered
- Groundwater table typically 3-5 metres below the surface, in eskers up to 40-50 metres
- As protective layers are thin, groundwater quality is sensitive to contamination and the impacts of climate change

POAKORITHE PROJECT

- Objective: A new, cost-efficient and risk based approach for risk management of groundwater bodies with poor chemical status
- Schedule: 2017-2019
- Two pilot study areas

The project group

- Three regional centres for economic development, transport and the environment (ELY)
- Geological Survey of Finland (GTK), Finnish Environment Institute (SYKE)
- WaterHope
- Cities, waterworks companies*
- Ramboll project coordination, reporting, communications

BACKGROUND GROUNDWATER BODIES WITH POOR CHEMICAL STATUS

- In Finland there are 95 groundwater bodies with poor chemical status, from which 87 are important for water supply
- According to the Finnish ELY centre experts, approx. 30% of those won't achieve good chemical status until 2027 (the last possible deadline according to WFD)
- The usual culprits: contaminated land, salinification (roads), agriculture
- Groundwater remediation is technically challenging and time consuming high costs
- Currently, emissions are observed separately and different studies at the area are handled separately we're not looking at the whole picture
- Prioritising risk management procedures is challenging

OBJECTIVES

- Water Framework Directive: achieving a good status
- Water supply protection
- Managing costs: applying the measures to the right sources

THE APPROACH

SOURCES AND RECEPTORS

SOURCES AND RECEPTORS

FIRST PHASE PROBABILITY

SECOND PHASE PROBABILITY

- This GIS-based phase contains open data parts from DRASTIC vulnerability index
 - The contaminant(s) and its qualities (water solubility)
 - Distance to groundwater
 - Slope/topography
 - Surface soil
 - Aquifer and vadose zone soil media
 - Hydraulic conductivity
 - Groundwater flow direction
 - Distances
 - Land use
 - Etc

SECOND PHASE PROBABILITY

As a result, the probability of the pathways is weighted and can be prioritised

If required, a more complex model can be constructed

NEXT STEPS

- Finalising step 3
- Testing the approach for one of our pilot study areas – comparing with the results gained from complex modeling
- Conclusions
- Applications
- Final report

THANK YOU! QUESTIONS?

Image: Samrit Luoma, GTK

Liisa Koivulehto
liisa.koivulehto@ramboll.fi

Jarno Laitinen jarno.laitinen@ramboll.fi

Kimmo Järvinen kimmo.jarvinen@ramboll.fi

Esa Rouvinen esa.rouvinen@ely-keskus.fi

